organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Vyacheslav N. Baumer,^a* Oleg V. Shishkin,^a Igor V. Ukrainets,^b Lyudmila V. Sidorenko^b and Samer A. El Kayal^b

^aInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin ave., Kharkiv 61001, Ukraine, and ^bDepartment of Pharmaceutical Chemistry, National University of Pharmacy, 4 Blyukher str., Kharkiv 61002, Ukraine

Correspondence e-mail: baumer@xray.isc.kharkov.com

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.036 wR factor = 0.103 Data-to-parameter ratio = 8.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-Ethyl-4-hydroxyquinolin-2(1H)-one

X-ray diffraction study of the title compound, $C_{11}H_{11}NO_2$, (I), has shown that the molecular geometry is similar to that of 1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid, (II) [Shishkina, Shishkin, Ukrainets, Dakkah & Sidorenko (2002). Acta Cryst. E58, o254-o256]. Observed elongations of the bonds around the N atom are caused by steric hindrance between the ethyl H atoms and the planar quinolone fragment. Exocyclic angles in the 4-position are also distorted, but, in contrast to (II), this distortion is caused by the formation of zigzag hydrogen-bonded chains along the [010] direction.

Comment

Derivatives of 4-hydroxyquinolin-2-one have been the focus of several structural investigations (Ukrainets et al., 1992, 1996; Garsia Ruano et al., 1991; Shishkina et al., 2002) because they can exist in different tautomeric forms, particularly depending on the presence and nature of the substituent in the 3-position. In the present paper, we report the crystal and molecular structure of 1-ethyl-4-hydroxyquinol-2(1H)-one, (I), in which an H atom occupies the 3-position (Fig. 1).

The rings in the title molecule are coplanar, to within 0.02 Å, with maximum deviations of 0.027 (1) and -0.031(1) Å for atoms N1 and C2, respectively. For the substituent atoms C9, O1 and O2, the corresponding deviations are 0.018 (2), 0.082 (1) and 0.035 (1) Å. The arrangement around the N atom is planar, despite the observed steric hindrance between the ethyl H atoms and the quinolone fragment [the contacts $O1 \cdots H9a$ of 2.33 Å and $H8 \cdots H9b$ of 2.02 Å are shorter than the sums of the van der Waals radii of 2.72 and 2.40 Å, respectively (Bondi, 1964)]. Details of the molecular geometry in (I) are very similar to those observed in the molecule of 1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acid, (II) (Shishkina et al., 2002), which is a precursor in the synthesis of (I) in accordance with procedure of synthesis (Ukrainets et al., 1996). Thus, C3-C4 is

Received 4 November 2004 Accepted 11 November 2004 Online 20 November 2004

© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

A view of the title molecule, with displacement ellipsoids drawn at the 50% probability level, showing the atom-numbering scheme.

Hydrogen bonds (dashed lines) in the crystal structure of the title compound.

longer than the standard value for a C=C bond (1.334 Å; Bürgi & Dunitz, 1994), and C2-C3 and C4-C4A are shorter than the value of 1.455 Å quoted by Bürgi & Dunitz (1994) for $Csp^2 - Csp^2$ (see Table 1). Futhermore, the N1-C2, N1-C8A and N1-C9 bonds are elongated as a result of the abovementioned steric hindrance between the methylene H atoms and the quinolone fragment. Distortion of the bond angles around atom C4 is also observed, with the angle O2-C4-C3noticeably greater than O2-C4-C4A (Table 1). In the structure of (II) these distortions are caused by the presence of the carboxy group in the 3-position and intramolecular O- $H \cdot \cdot \cdot O$ hydrogen bonding. In the title molecule, the 3-position is not substituted, and the hydrogen bonding is intermolecular (Fig. 2), via an $O2-H2 \cdots O1^{1}$ hydrogen bond O2-H2 = $0.82 \text{ Å}, \text{H2} \cdot \cdot \cdot \text{O1}^{i} = 1.76 \text{ Å}, \text{O2} \cdot \cdot \cdot \text{O1}^{i} = 2.580 \text{ (2) Å and O2} -$ H2···O1ⁱ = 173°; symmetry code: (i) 1 - x, $y - \frac{1}{2}, \frac{1}{2} - z$], leading to the formation of infinite zigzag chains along the [010] direction.

Experimental

The preparation procedure for the title compound and the production of crystals for X-ray analysis has been described by Ukrainets et al. (1996).

Crystal data

$C_{11}H_{11}NO_2$	Mo $K\alpha$ radiation	
$M_r = 189.21$	Cell parameters from 24	
Orthorhombic, $P2_12_12_1$	reflections	
$a = 7.8474 (12) \text{ \AA}$	$\theta = 11.0 - 12.0^{\circ}$	
$b = 8.4660 (14) \text{\AA}$	$\mu = 0.09 \text{ mm}^{-1}$	
c = 14.033 (3) Å	T = 293 (2) K	
$V = 932.3 (3) \text{ Å}^3$	Polyhedron, colourless	
Z = 4	$0.35 \times 0.30 \times 0.30$ mm	
$D_x = 1.348 \text{ Mg m}^{-3}$		

Data collection

Siemens P3/PC diffractometer $2\theta/\theta$ scans Absorption correction: none 1226 measured reflections 1131 independent reflections 974 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.016$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.103$ S = 0.971131 reflections 127 parameters

 $\theta_{\rm max} = 26.5^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 10$ $l = 0 \rightarrow 17$ 2 standard reflections every 98 reflections intensity decay: 1%

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0774P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.13 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

O1-C2	1.262 (2)	C2-C3	1.425 (3)
O2-C4	1.339 (2)	C3-C4	1.355 (3)
N1-C2	1.382 (2)	C4-C4A	1.452 (2)
N1-C8A	1.402 (2)	C4A-C5	1.403 (3)
N1-C9	1.471 (2)	C4A-C8A	1.409 (2)
C2-N1-C8A	121.46 (15)	N1-C2-C3	118.58 (16)
C2-N1-C9	117.17 (15)	C4-C3-C2	121.75 (17)
C8A-N1-C9	121.27 (14)	O2-C4-C3	125.16 (17)
O1-C2-N1	118.20 (16)	O2-C4-C4A	115.04 (16)
01-C2-C3	123.22 (17)	C3-C4-C4A	119.80 (16)
C8A N1 C2 O1	176 66 (16)	C0 N1 C2 C3	170.85 (16)
$C_0 N_1 C_2 O_1$	170.00(10)	$C_2 = C_1 = C_2 = C_3$	179.03(10) 170.71(17)
$C_{2} = N_{1} = C_{2} = O_{1}$	0.3(2)	$C_2 = C_3 = C_4 = O_2$	-1/9./1(1/) 15(2)
CoA=NI=C2=C3	-5.8 (2)	C2=C3=C4=C4A	1.5 (5)

All H atoms were located in a difference map and treated as riding, with an O-H distance of 0.82 Å and C-H distances in the range 0.93–0.97 Å. $U_{iso}(H)$ values were set equal to $1.2U_{eq}$ of the carrier atom ($1.5U_{eq}$ for methyl H atoms).

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK and XPREP (Siemens, 1991); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1991); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

This work was supported in part by the Ministry of Education of Ukraine. VB acknowledges the ICDD for financial support (grant No. #03-02).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Bondi, A. (1964). J. Phys. Chem. 68, 441-446.

- Bürgi, H.-B. & Dunitz, J. D. (1994). Editors. *Structure Correlation*, Vol. 2, pp. 767–784. Weinheim, New York, Basel, Cambridge, Tokyo: VCH.
- Garsia Ruano, J. L., Pedregal, C. & Rodriguez, J. H. (1991). *Heterocycles*, **32**, 2151–2159.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (1997). SHELXL97. Release 97-2. University of Göttingen, Germany.
- Shishkina, S. V., Shishkin, O. V., Ukrainets, I. V., Dakkah, A. N. & Sidorenko, L. V. (2002). Acta Cryst. E58, 0254–0256.
- Siemens (1989). P3. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Siemens (1991). XDISK, XPREP and XP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.
- Ukrainets, I. V., Bezuglyi, P. A., Treskach, V. I., Turov, A. V. & Slobodzian, S. V. (1992). *Khim. Geterotsikl. Soedin.* pp. 636–639. (In Russian.)
- Ukrainets, I. V., Taran, S. G., Gorokhova, O. V., Gorlacheva, I. V., Bezugly, P. A. & Turov, A. V. (1996). *Khim. Geterotsikl. Soedin.* pp. 1104–1112. (In Russian.)